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Abstract -- In basic genetic algorithm (GA) applications, the fitness of a solution takes a value that is
certain and unchanging. There are two classes of problem for which this formulation is insufficient. The first
consists of ongoing searches for better solutions in a nonstationary environment, where the expected fitness of a
solution changes with time in unpredictable ways. The second class consists of applications in which fitness
evaluations are corrupted by noise. For problems belonging to either or both of these classes, the estimated fitness
of a solution will have an associated uncertainty.

Both the uncertainty due to environmental changes (process noise) and the uncertainty due to noisy
evaluations (observation noise) can be reduced, at least temporarily, by re-evaluating existing solutions. The
Kalman formulation provides a well-developed formal mechanism for treating uncertainty within the GA
framework. It provides the mechanics for determining the estimated fitness and uncertainty when a new solution
is generated and evaluated for the first time. It also provides the mechanics for updating the estimated fitness and
uncertainty after an existing solution is re-evaluated, and for increasing the uncertainty with the passage of time.
A Kalman-extended genetic algorithm (KGA) is developed to determine when to generate a new individual, when
to re-evaluate an existing individual, and which one to re-evaluate.

This KGA is applied to the problem of maintaining a network configuration with minimized message
loss, in which the nodes are mobile, and the transmission over a link is stochastic. As the nodes move, the optimal
network changes, but information contained within the population of solutions allows efficient discovery of
better-adapted solutions. The ability of the KGA to continually find near-optimal solutions is demonstrated at
several levels of process and observation noise. The sensitivity of the KGA performance to several control
parameters is explored.

Index terms – Genetic algorithm, Kalman filter, adaptive control, network optimization.

1. Introduction
The Kalman genetic algorithm (KGA) is an extension of the basic genetic algorithm (GA) [1-3]  in which

Kalman filtering [4-6]  is applied to the fitness values associated with the individuals that make up the population.
In the GA, each individual has a chromosome that represents a solution to a problem, and each solution has a
well-defined, stationary measure of fitness within the context of the problem space or environment. The GA
provides a compelling and efficient method to perform directed search in high-dimensional problem spaces, based
on this fitness measure.

In a range of interesting applications, however, the environment is nonstationary. The fitness of a given
chromosome-represented solution will change, gradually or abruptly, as conditions change within the
environment. If each fitness evaluation requires a finite expenditure of time (to perform computations, or to
accumulate sensor data), the fitnesses of other solutions can change while one solution is being evaluated. This
unpredictable change contributes to uncertainty in the current estimated fitnesses of the solutions. In addition,
applications are often encountered in which the evaluation of the fitness produces a value that is not exact, but
rather has an associated uncertainty. This uncertainty may arise from stochastic elements in either the
environment or the fitness evaluation process. The Kalman formulation provides a natural mechanism for treating
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these two types of uncertainty, thus extending the application domain of the GA from stationary problem spaces
with exact solutions to nonstationary, stochastic environments.

In order to apply the Kalman formulation to the individuals in a population, an additional parameter must
be associated with each individual. Where the GA works only on a fitness value associated with each individual,
the KGA also treats the uncertainty associated with that fitness estimate. For the KGA, the fitness measure is
interpreted as the “current best estimate of fitness,” rather than as an absolute fitness characterization. The
dynamics of fitness and uncertainty are specified by the Kalman formulation, as described in  section 2.

The KGA augments the GA with two simple provisions. The first provision allows that some of the
evaluation cycles are used to create and evaluate new individuals, while the remaining evaluation cycles are used
to re-evaluate individuals that already exist in the population. Both uses of evaluations are means of acquiring
knowledge [7]. The KGA decides whether a given evaluation cycle will be expended to create a new individual or
to re-evaluate an existing individual. In the basic KGA, a preset constant fraction of the evaluations is expended
on new individuals. The second provision of the KGA is that it decides which individual to re-evaluate, when an
existing individual is to be re-evaluated. The basic KGA selects the individual with the highest uncertainty,
among those having estimated fitness greater than the population mean minus the population standard deviation.
The augmentations of the basic GA that extend it into the KGA are described in section 3.

Because of the associated uncertainty, purely fitness-based selection, as in the basic GA, may select the
wrong individuals. The wrong parents may be selected for reproduction, better individuals may be displaced by
poorer individuals, or the wrong individual may be selected to represent the best current solution. This work
focuses on the mechanics of re-evaluating existing individuals. Modifying the selection operators to utilize
uncertainty is an interesting subject for further research.

The KGA is applied to the problem of optimizing a network configuration in a nonstationary environment
where the fitness evaluations return uncertain values. This application and its implementation are described in
section 4. Performance results of the KGA in this application are presented in section 5. Several levels of process
and observation noise are examined, and the sensitivity of the KGA performance to several control parameters is
explored.

The literature contains applications in which GAs are used to tune the parameters of a Kalman filter
[8-11].  There is also some research reported as a hybridization of Kalman filtering and GAs. In [12], a GA is
used to search for good subsets of a large rule set, while a Kalman filter is used  to tune the resultant behavior for
each subset by optimizing control parameters. Kalman filtering is not applied to the individual, but by the
individual.  In [13], Kalman filtering and a GA are simply used to optimize two separate parts of a problem.
Several authors have examined the use of GAs for nonstationary environments [14-17]. These works identify the
problem that once a GA population converges to an optimal solution for a particular environmental condition, it is
not a good starting population to search for a new optimum in a changed environment. They address this problem
by maintaining diversity in the GA population through various mechanisms: keeping all previous best individuals
in the population [14], using diploid dominant/recessive genes [15], regularly introducing random chromosomes
[16], and triggering an increased mutation rate [17] when environmental changes are perceived. In its current
form, the basic KGA does not impose diversity explicitly, but a mechanism to reduce the selection of nondiverse
individuals is under development.

In a GA variant known as learning classifier systems (LCSs), the individuals in the population work
together to produce an overall behavior [18-21]. There is a mechanism to determine the contribution to the overall
fitness provided by each individual. A GA is used to improve or optimize the overall behavior by evolving the
population. As in applications of interest here, an ensemble of fitness evaluations would produce an ensemble of
fitness values for each individual. The variation within the ensemble of fitness values is attributed to differing
trajectories in the environmental state space used for each evaluation, which is a form of stochastic environmental
noise. Traditional LCSs use the expected fitness (i.e., the average over an ensemble of fitness evaluations) to
evolve the population [18]. There is a measure, known as the prediction error, that characterizes the variation of
fitness values in this ensemble [19, 20]. This prediction error is related closely to the observation noise variance
that will be introduced in section 2. A well-developed and widely used LCS, called XCM, uses an alternative
fitness measure, known as the accuracy, which is inverse to the prediction error [21]. Accuracy-based selection
works in LCSs because inaccurate individuals (those that exhibit a large variation in evaluated fitness) degrade
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the collective behavior of the whole population, even if their average fitness is good. Since accuracy does not
provide a measure of the expected fitness of the individual, neither the basic GA nor the KGA can use accuracy as
a basis for selection.

In previous work [22-25], the author used GAs to re-optimize controllers periodically in the context of a
nonstationary environment. The heuristic of including the previous best solution in an otherwise random next
initial population was explored, but a theoretical formulation underlying the use of GAs in noisy, nonstationary
environments was lacking. In a SciSearch® search of 17.5 million technical articles, no reference was found in
which a Kalman filter is used as an integral part of the GA evolutionary mechanism.

2. Kalman formulation applied to individuals
The Kalman formulation is a method to estimate the values of a set of underlying quantities, using a time

sequence of a set of observations. It arises from the philosophical view that the true world is unknowable, but that
an approximation of the world can be built up through observation. It was developed originally to estimate the
orbit parameters of satellites, given a sequence of observations from ground sites. It would be hard to overstate
the importance of the Kalman formulation over the last 40 years, as evidenced by the tens of thousands of papers
on the subject in the literature.

It is supposed that there is a set of quantities of interest that quantify some phenomena in the
environment. The dynamics of these quantities of interest are specified by a linear model that has a deterministic
part (in which the vector of values of the quantities of interest is multiplied by a matrix to get their new values,
i.e., each new value is a linear combination of the old values) and a stochastic part (which adds a random
increment to each quantity during a time step). The vector of the variances of these random increments is called
the process noise vector. There is an observation process that gives a set of measurements. The observation
process is also modeled as being linear: the vector of measurement values is produced by multiplying the vector
of quantities of interest by an observation matrix and then adding a random increment to each measurement value.
The vector of the variances of the random increments that add to the measurement vector is called the observation
noise vector. There is another vector that holds the current best estimate of the values of the quantities of interest.
Finally, there is a matrix known as the covariance matrix. The elements of the covariance matrix hold the
expected values of the pairwise products of the error between the estimated and true values of the quantities of
interest. The diagonal elements of the covariance matrix give the variance of the error for each quantity of
interest, while the off-diagonal elements contain information about the correlation of errors on different quantities.
The Kalman formulation specifies how the vector of estimates and the covariance matrix are updated with the
passage of time, and after observations.

For an individual in a genetic algorithm, the quantity of interest is taken to be the fitness. In a
nonstationary, noisy environment, the true value of this fitness is indeed unknowable, unless a great many fitness
evaluations can be collected and averaged in a time so short that the environment does not change. The Kalman
formulation provides the means to maintain an estimate of this underlying fitness, and a measure of the
uncertainty of the estimate. Since there is only one quantity of interest, the covariance matrix has only one
element, which is the variance of the error between the estimated and true fitness. This can be interpreted as the
uncertainty of the fitness estimate. The dynamic model matrix is taken as unity, which is equivalent to assuming
that the expected fitness change due to process noise is zero. (While this is true for most solutions, the fitness of
very good solutions will most likely be degraded by process noise. Taking the dynamic model matrix as a
constant slightly less than unity would account for this degradation, but this has not been adequately examined.)
Since the estimated fitness corresponds one-to-one to the underlying fitness, the observation matrix can also be set
to unity. The matrix equations of the Kalman formulation then simplify to scalar equations.

The KGA maintains a population of individuals, each having 1) a chromosome that represents a trial
solution to a problem, 2) a best-estimated fitness value, fi, and 3) an uncertainty, Pi, associated with the fitness
estimate. As an aid to interpretation of the uncertainty, the current underlying (true, hidden) fitness is
approximated as the best estimate of fitness, plus or minus the square root of the uncertainty. An individual can be
characterized by a point in the two-dimensional (f, P) space. The Kalman formulation prescribes the motion of
this point as time passes, and as fitness re-evaluations occur.
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In environments with stochastic processes, the result of a fitness evaluation will be a real value that
represents the underlying fitness value at the time of the evaluation, but has an associated uncertainty. If an
ensemble (over the stochastic elements in the environment) of fitness evaluations were to be made on a solution,
the variance, R, of the ensemble of the resulting fitness values, would quantify the uncertainty in the fitness
evaluation. This variance is analogous to the observation noise variance of the Kalman formulation. R can be
interpreted as the uncertainty with which the result of a single fitness evaluation or re-evaluation represents the
true, underlying fitness of the solution.

In a nonstationary environment, the underlying fitness of a given solution will change with time. In the
Kalman formulation, this change in the environment is defined as process noise. Like the observation noise, the
process noise is characterized by a variance, in this case designated by Q.  Q gives the expected square of the
change in the underlying fitness of solutions during a specified time interval, due to change in the environment. In
this formulation, Q is the process noise variance associated with a fitness evaluation cycle (i.e., a time step). There
is some vagueness because different solutions might see different amounts of process noise. In this work, it is
postulated that the process noise of interest is that experienced by a set of “good” solutions, which is defined
somewhat circularly as those solutions in the population. As with any Kalman application, Q can be specified by
prior knowledge about the environment, or it can be evaluated adaptively.

When a new individual is created and evaluated, its uncertainty will be characterized initially by the
variance of the observation (evaluation) noise, Pi = R. As an evaluated solution ages, its uncertainty grows. If the
uncertainty had a value Pprior at the start of an evaluation cycle, the associated uncertainty at the end of the cycle
would increase according to

P = Pprior + Q (1)

This is a scalar version of the Kalman time-update equation for the covariance matrix.
When an existing individual is re-evaluated (returning a fitness value of g, with observation noise

variance R), the previous estimate of fitness, fprior, is updated using a scalar version of the Kalman observation
equation:

f = fprior +
Pprior

Pprior + R
(g − fprior )  (2)

The new fitness estimate is a linear combination of the estimate prior to the re-evaluation, and the noisy value
obtained by the re-evaluation. These two terms are weighted in proportion to the inverse of their respective
uncertainties (the uncertainty associated with the value returned by a re-evaluation is R, while that of the prior
best estimate is P.) The quantity P/(P+R) is analogous to the gain of the Kalman formulation.

In addition, a re-evaluation reduces the uncertainty P as follows:

P = Pprior R /(Pprior + R) . (3)

Equations (1), (2), and (3) encapsulate the Kalman formulation as applied to a single quantity of interest, and
specify the dynamics of individuals in the (f, P) plane.

3. Kalman-extended genetic algorithm
The basic GA can be extended in a straight-forward way to make use of the uncertainty associated with

each individual. Before each fitness evaluation cycle, it must be decided whether to generate a new individual, or
to re-evaluate an existing individual. In the simplest KGA formulation, a specified fraction, Fnew, of evaluation
cycles is allocated for generating and evaluating new  individuals. The allocation decision is made by generating a
random number, rand, distributed uniformly in the interval zero to one. If rand is less than Fnew, a new individual
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will be created and evaluated; otherwise an existing individual will be re-evaluated. In the case that Fnew is a ratio
of small integers, the appropriate allocation can be accomplished by following a prescribed pattern: To implement
Fnew = 0.5, the algorithm alternates between creating a new individual and re-evaluating an existing individual.

When an evaluation cycle is given over to re-evaluating an existing individual, the KGA specifies which
individual to re-evaluate. Intuitively, more knowledge per evaluation can be generated by re-evaluating more
uncertain individuals, and re-evaluating fitter individuals is more likely to generate useful knowledge. Re-
evaluations should not be wasted on those individuals whose fitness is poor, or whose fitness estimate already has
very low uncertainty. The basic KGA employs a simple selection criteria: Select the individual with the highest
uncertainty among those having estimated fitness greater than the population mean minus the population standard
deviation. The selected individual is then re-evaluated and has its estimated fitness and uncertainty updated with
the Kalman mechanics described in section 2.

When an evaluation cycle is given to a new individual, the process is identical to that of traditional GA.
There is an initialization phase during which all new individuals are created with random chromosomes. After a
specified number of random chromosomes have been created, all subsequent new chromosomes are created with
the genetic mechanics. Parents are selected form the existing population based on their estimated fitness, and a
new child chromosome is generated using crossover, mutation, and repair operators. A target population size is
specified. Once this population size is attained, whenever a new individual is created, it is added to the
population, and then the population is reduced back to the target size by discarding the individual with the lowest
estimated fitness.

During the time it takes to perform a fitness evaluation, the uncertainties of all other individuals in the
population grow, and must be updated to the current time, according to Eq. (1). The KGA is shown schematically
in Fig. 1.

4. Application: Network Configuration Optimization
4.1 Application Overview

A test-bed has been constructed for developing and experimenting with the KGA in a simulated
nonstationary, noisy environment. It has been implemented in Java, with a GUI that allows a user to construct
scenarios and observe simulations of the KGA in operation. This application derives from several atmospheric
aerosol detection systems [26] that exist in various stages of development and deployment. These systems employ
a network of atmospheric aerosol sensors, which deliver their data via low-power radio links to a collection point,
providing real-time capability to detect and classify aerosolized biological agents. A plausible variant is
considered, in which the sensors are mounted on vehicles, and move in unpredictable ways within a known
region. The test-bed is designed to simulate generic mobile-node network systems.

The test problem is to configure a network of radio links connecting a set of nodes to a collection point.
The task is to maintain a good network configuration of links as the nodes move. The computations are assumed
to be performed centrally, using measurements of the link transmission fractions. No provision is made for
distribution of computation to the nodes. A sensor node may transmit directly to the collection point or to another
node. A node can receive and repeat data from other nodes. The data stream from each node takes one path,
possibly containing several links, back to the collection point. The network of links is thus an acyclic, directed
graph (i.e., a tree) with the base being the collection point, and the sensors forming the other nodes. Each radio
link forms an edge of the graph.

In its pure, unconstrained form, this problem admits an algorithmic solution (via Dijkstra’s shortest-path
tree algorithm) [27-29].  The existence of this solution does not render the application trivial, because slight
variations in the problem definition, as would be encountered in practice, make this problem NP-complete [27].
Examples of such variations include: a constraint on the number of up-link channels a node can receive; a
bandwidth limitation on the links or a degradation in transmission fraction with increased message traffic; a
maximum number of links in a path to the collection point; or the possibility of redundant paths, where a node
may transmit to more than one receiver. Optimization of a complex network with routing and bandwidth
constraints is not generally amenable to algorithmic approaches, but can be attacked with a GA [30].  The
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existence of an algorithmic solution for the pure form of the problem does allow the performance of the KGA to
be assessed relative to the time-varying optimal solution.

Make new individual:
random chromosome

 Select existing individual
for reevaluation

Make  new individual:
genetic mechanisms

Advance clock by one evaluation cycle
Increase uncertainties of all other individuals

Allocation
decision

Reevaluate an existing 
individual

   Make a new 
individual

 In 
initialization

phase?

Yes

No

Start

Evaluate fitness
Set fitness and uncertainty

Evaluate fitness
Update fitness and uncertainty

Evaluate fitness
Set fitness and uncertainty

Discard weakest individual

Figure 1. Schematic of the Kalman-extended genetic algorithm

The nodes are treated as executing a random walk within a prescribed area. (The vehicles are not
dedicated to the sensors, but are engaged in other activities.) As the nodes move, the link transmission
probabilities change, and the optimal network configuration also changes. This movement of the nodes makes the
problem environment nonstationary: The expected fitness (averaged over the stochastic variations in link
transmissions for given node locations) of the time-varying optimal network changes over time as the nodes
move.

In the GUI representation, a prescribed area on the ground of arbitrary shape and size is represented on a
2D Cartesian cell grid. Each cell represents a 160 by 160 meter square. A grid of 125 by 125 cells is used to cover
a 20 by 20 km area. The GUI allows a user to select (with a mouse) the region in which the nodes will be allowed
to move. The user may also specify the location of several “assets” and have the GUI calculate an elliptical region
that contains them. Nodes may be restricted to either the interior of the prescribed region, or to the perimeter.
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Only one sensor can occupy a cell. Provisions have been made for line-of-sight blockages, but no blockages are
used in any of the following.

A baseline scenario has been constructed in which 25 vehicle/sensor/nodes are restricted to a roughly 10
by 20 km elliptical brigade-sized region. In addition, there is a stationary collection point. The vehicle-mounted
sensors are initialized by assigning each sensor to a random cell within the prescribed area. A separate pseudo-
random number generator is used to place and move the nodes, so that the same placements and motions can be
repeated. Fig. 2 shows the locations of 25 randomly placed sensors. The discrete cell structure causes the blocky
appearance of the region’s boundary.

Figure 2. Example scenario, showing a user-prescribed region, 25 randomly placed nodes, and a randomly generated link

network. The collection point is shown as the open circle near the center.

4.2 Chromosome Representation of the Network Configuration
GA chromosomes can take a variety of forms [31].  The requirements on the form of the chromosome are

1) that it can be transformed into a possible solution of the problem, 2) that a sufficient region of the problem
space can be represented, and 3) that a set of genetic operators can be constructed that allow for efficient
exploration of the problem space. For this implementation, the chromosomes are simply fixed-length sequences of
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bounded integers. The chromosomal form (the genotype) can be transformed directly into the problem solution
form (the phenotype).

Let S designate the total number of nodes, exclusive of the collection point. The baseline scenario
contains 25 sensor nodes. Each node has a unique integer ID in the range of 1 to S. Each node establishes a radio
link to another node or to the collection point, to transmit its own data, and any data it receives from other nodes.
The receiver of a node is specified by an integer in the range of 0 to S.  A value of 0 indicates that the link is
transmitting directly to the collection point, while any other value specifies the ID of the receiving node. The
network configuration is specified completely by giving the receiver for each node [27].  This requires a total of S
integers, each in the range 0 to S. The number of distinct network configurations that can be thus represented is
(S+1)S. For 25 sensors, there are 2.3(10)35 possible chromosomes representing as many alternative network
configurations. The number of possible receivers could be reduced by one if nodes are forbidden from
transmitting to themselves. This restriction could be built into the chromosomal encoding, thus reducing the
number of representable networks to only 8.9(10)34. This representation was not selected, however, in order to
keep the direct interpretation of the genes as receiver node ID’s.

There is an alternative representation that provides a one-to-one mapping to valid spanning trees. This is
known as the Prüfer representation [32-34]. The Prüfer representation uses S-1 integers, each in the range [0, S].
An algorithm is required to translate between the Prüfer representation and the network configuration. The Prüfer
representation has been found to work poorly for GA search, apparently because small changes in the
chromosome often translate to great differences in the corresponding network. This conclusion was confirmed in
personal communications with the authors of both [33] and [34].

4.3 Genetic Operators
Random valid network configurations are generated by a simple algorithm, as follows. Start with all

nodes unconnected. Select an unconnected node at random. Select a receiver at random from the set containing
the collection point and all connected nodes. The selected unconnected node takes the randomly selected receiver
to be its receiver, and then becomes a connected node. Repeat this process until all nodes are connected. A
randomly generated network linking 25 sensors to a collection point is shown in Fig. 2. The 25-integer
representation of this network is {8 19 17 18 12 20 20 20 11 0 21 0 20 20 13 12 12 20 24 12 0 6 18 12 21}. Node
1 transmits to node 8, node 2 transmits to node 19, etc. Nodes 10, 12 and 21 transmit to the collection point,
designated by the receiver index “0”.

The mutation operator changes the receiver of a node to a different receiver, subject to the requirement
that the new receiver is not upstream of the given node. The resulting network will thus be a valid tree.

The number of valid spanning-tree configurations is (S+1)(S-1), which is less than the number of possible
representable configurations by a factor of S+1. In order to use the “receiver representation,” a repair operator is
needed to ensure that only valid spanning tree configurations are considered, i.e., all nodes and the collection
point are included in the graph, and there are no cyclic paths in the graph. The repair operator first accepts all
nodes that have a path to the collection point. This is a recursive process that first identifies nodes that are linked
directly to the collection point, then nodes with two links in the path to the collection point, etc. Any remaining
unconnected nodes are then connected to a randomly selected already-connected node, until all nodes have been
added to the tree.

Although heuristic recombination operators have been developed for deriving a child network from two
parent networks [35], this implementation uses a traditional two-point crossover operator, in an attempt to keep
the algorithm separate from the application. Each integer-valued gene comes intact from one parent or the other.
A child chromosome generated by crossover must undergo the repair operation to ensure a valid spanning tree.

4.4 Fitness Evaluation
The transmission fraction over a link depends on the length of the link, and also on such stochastic

phenomena as obstructions, atmospheric conditions, jamming, antenna orientation, etc. At short distances, the
expected transmission is nearly perfect, because the signal is much higher than the noise. There is a scale distance,
d, where the expected transmission fraction across a link is reduced to one half; for significantly longer
transmission distances, the transmission fraction will be very small (extinction and the 1/r2 antenna gain relation



9

degrade the signal, which becomes obscured in noise). There is another scale distance, w, which characterizes the
distance over which the transmission fraction drops from near one to near zero. A parameterized formulation is
used for the expected transmission fraction from node i to node j:

Tij = 1
2 − 1 arctan

dij − d

w( ), (4)

where dij  designates the distance from node i to node j. The transmission as a function of distance is shown in
Fig. 3 for d = 5000 m and w = 100 m. The actual transmission loss observed in a given measurement will differ
from the expected value due to the stochastic phenomena mentioned above. If the path from a node to the
collection point contains a sequence of links, the total transmission fraction from the node to the collection point
is simply the product of the transmission fractions of each link in the path. Data loss within a node, between
reception and re-transmission, is assumed to be negligible.

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

Transmission Distance (m)

Figure 3. The transmission fraction across a link, as a function of the length of the link, using the parameterized
formulation

The fitness of a network configuration can be characterized in a variety of ways, depending on what is
important in any given application. For this application, the network configuration fitness is taken to be the
average, over all nodes, of the expected transmission loss from each node to the collection point. The goal of
maximizing transmission fraction is then equivalent to a goal of minimizing message transmission loss. For the
random network shown in Fig. 2, the average message loss fraction is 0.946.

4.5 Optimal Network Configuration
Dijkstra’s shortest-path algorithm [28] can be used to generate the network that minimizes the

transmission losses from each node to the collection point, for a given set of node locations. The shortest-path tree
algorithm minimizes the sum of the weights associated with all edges in the paths from any node to the root node.
The weight associated with an edge is taken as the natural log of the inverse of the transmission fraction, so that
minimizing the sum of the weights along a path is equivalent to maximizing the total transmission fraction along

T
rn

sm
is

si
on

 F
ra

ct
io

n



10

the path. The shortest-path network is shown in Fig. 4, where the sensors have the same locations as in Fig. 2. For
this network configuration, the average message loss fraction is 0.03185.

Figure 4. The shortest-path tree for 25 randomly located nodes.

4.6 Performance of the Basic Genetic Algorithm for Static, Noiseless Case
Before setting up the KGA, the basic GA is run against a static, noiseless case. This ensures that the

solution will converge to the optimal, and provides an estimate of how many individuals must be created and
evaluated. Fig. 5 shows how the fitness (characterized by the network transmission loss) of the best GA solution
improves during the course of a typical GA search for a case in which the nodes do not move and there is no
uncertainty in the fitness evaluations.

For the example shown in Fig. 5, the population holds up to 100 individuals. Parents are selected on a
power-law rank-based measure, with the most-fit individual being 2.5 times more likely to be selected than would
occur if all individuals were equally likely to be selected. The probability of selecting the ith-ranked individual is
given by [iß-(i-1)ß]/Nß, where ß=ln(N/2.5)/ln(N), and N is the population size. 85% of new individuals are created
by two-point crossover from two parents, and the remaining 15% are created by duplicating an existing
individual. In both cases, the resulting child is repaired and mutated. The mutation rate undergoes periodic
annealing to produce a punctuated equilibrium effect. The mutation rate drops from 4/S down to 1/S over
successive epochs of 250 evaluation cycles each. At the beginning of each annealing cycle, the algorithm explores
the solution space, while at the end of the annealing cycle, the algorithm tries to find local optima. The
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performance of the GA is insensitive to the values of many of these parameters (the population size of 100, the
2.5 first-rank preference factor, the 85% crossover generation, the initial and final epoch mutation rates, the 250
cycle epoch duration).
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Number of Evaluations

Best Fitness

Standard deviation of population fitness

Figure 5. The fitness of the best individual obtained with a GA for a static, noiseless case. Also shown is the standard

deviation of fitness of the population of 100 individuals.

The nodes start and remain at the locations shown in Fig. 2. The initial random individual solution, shown
in Fig. 2, has a transmission loss of 0.9459, which is 2870% worse than the fitness of the optimal configuration
(which has transmission loss = 0.03185). After an initial population of 100 random individuals is created and
evaluated, the best individual has a transmission loss of 0.6316, which is 1883% worse than optimal. After 2500
evaluation cycles (i.e., 25 generation-equivalents), the exponential improvement begins to flatten out. At that
point, the best transmission loss attained was 0.04550, which is 43% worse than optimal. It requires 8150
evaluation cycles to reach a solution within 1% of optimal (transmission loss = 0.03217). The GA finds the exact
optimal solution after 10200 evaluation cycles (i.e., 102 generations of complete replacement). The continual
reduction in the standard deviation of population fitness indicates the convergence of the population. However,
when a new solution is found that is significantly better than the best current solution, the standard deviation of
the population fitness will increase until the whole population begins to benefit from the discovery. In dozens of
similar runs, the optimal solution was always obtained, with the number of required evaluations ranging from
5000 to 17000.
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4.7 Implementation of environmental dynamics
A simulation is run in which the time is advanced in steps of duration τ. During each time step, the fitness

of one network configuration is evaluated, as prescribed by the KGA. In addition, during each time step, a sensor
may move 160m to an adjacent, unoccupied cell, causing a change in the environment. In order to explore
sensitivity of the KGA to process noise, the expected change in fitness during a time step can be varied by
controlling how often sensors are moved. If, for example, sensors are moved (to one of the eight nearest-neighbor
cell locations) at a rate of one movement per 50 evaluation cycles, the process noise variance is found to average
approximately 5.24E-10 per cycle.

During the 20 time steps which would be required to re-evaluate and reproduce all members of a 10-
member population, the process noise would be ~10E-8, corresponding to a typical fitness change of ~0.0001
between re-evaluations of a given individual. This process noise level is about one part in 300 of the fitness of
typical near-optimal network configurations in the baseline scenario. Fig. 6 shows how the fitness of the optimal
solution degrades over time due to process noise (environmental change) if the network (the receiver for each
node) remains unchanged. The result is for the Q = 5.24E-10 per evaluation cycle process noise level. Starting
with the sensor configuration shown in Fig. 2 and incurring a total of 5000 node movements (250,000 evaluation
cycles, 50 cycles per node movement), the fitness of the optimal configuration ranges from 0.0263 to 0.0359, with
a mean value of 0.0299, as shown in the lower line of Fig. 6.
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Figure 6. Degradation of fixed solution due to environmental change. The upper line shows the transmission loss of an

unchanging network configuration which was initially the optimal configuration. The lower line shows the transmission of

the optimal configuration which is adjusting continually to changing environmental conditions.

The process noise rate can be calculated adaptively using a fixed-gain recursive filter and the evaluated
fitness changes caused by the sensor movements. Resulting instability has been observed, but not investigated
further.
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4.8 Implementation of observation noise
The observation noise, R, is implemented as follows. The transmission fraction over a link depends not

only on the length of the link, but also on stochastic factors such as the atmospheric conditions and line-of-sight
obstructions. These stochastic factors contribute to the observation noise that gives variation in the actual fitness
of a network configuration. In the test-bed, observation noise is added to average transmission fraction of a
network configuration whenever it is evaluated. An evaluation of the fitness of a given network configuration for
a given set of node positions is artificially given an observation error, by adding (2r-1)sqrt(3R), where r is a
random number between 0 and 1. This produces a distribution of observation noise with a variance of R.

5. KGA Performance Results
5.1 KGA parameters

The chromosome consists of a sequence of 25 integers, each in the range of [0, 25]. The population size is
10 individuals. The first 100 individuals are created as random network configurations. All subsequent new
individuals are generated by genetic operations on the individuals extant in the population. Evaluation cycles are
used alternately for new individuals and re-evaluation of existing individuals, so that half of the cycles are spent
on each. Parental selection uses the power-law rank-based formulation described in section 4.6, using the
population size of 10. The mutation rate anneals periodically, so that 4 genes are mutated at the beginning of
epochs, gradually reducing until only 1 gene is mutated by the end of the epoch (250 cycles per epoch). The
implementation does not allow duplicate chromosomes – if any are generated, they are discarded and replaced
before evaluation.

The performance of GA search (e.g. how quickly and reliably it converges) can be validated by repeating
the search multiple times with different random number seeds. A GA search that typically requires 10,000 fitness
evaluations to find the optimal solution might be run 25 times to validate the search performance. For the KGA,
this level of validation can be obtained by running a single simulation for 250,000 evaluation cycles.

5.2 Baseline results
A simulation was run in which the observation noise variance of the fitness (the message loss fraction)

was set to R = 10-8. Since the message loss fraction of good configurations is around 0.03, the standard deviation
of the observation noise of 1E-4 is about one part in 300. For this baseline case, the process noise variance is
approximately 5.24E-10 per cycle, which is achieved by moving the sensors at the rate of one movement per 50
cycles. As described above, for a population size of 10, this process noise standard deviation is about one part in
300 between re-evaluations of a typical individual.

Fig. 7 shows the fractional error of the actual fitness, fKGA, (average message loss rate, averaged over the
stochastic observation noise) of the best member of the population, relative to the fitness, fDijkstra, of the optimal
“Dijkstra” network configuration, i.e. (fKGA - fDijkstra)/ fDijkstra. Initially, when the KGA has evaluated only one
random configuration (that shown in Fig. 2) the fractional error is 2870%. As the KGA generates and evolves its
population of individual solutions, the fractional error drops. Initial convergence is seen to be attained after about
10,000 evaluation cycles. After initial convergence, the KGA solution is only 1.09% worse than optimal, on
average.

Several events can be seen in Fig. 7 as spikes in the fractional error. These occur when the motion of the
sensors causes the optimal network configuration to undergo a significant restructuring. The fractional error
between the best KGA solution and the optimal solution rises on these occasions, but then drops back down as the
KGA discovers the new configuration. Note that these recoveries require many fewer cycles than the 10,000 time
steps required to reach near-optimal solutions beginning from scratch.

5.3 Excursion: Observation Noise
An excursion from the baseline case was examined, in which the observation noise variance is varied

from R = 10-8 up to R = 10-4. The process noise was set to Q = 5.24(10)-11 per cycle. The population size is 10
individuals, and 50% of evaluation cycles are used to re-evaluate existing individuals. Fig. 8 shows how the KGA
is able to track the optimal configuration at these noise levels. The values shown are obtained by averaging the
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fractional error of the best KGA solution relative to the optimal Dijkstra solution, over 230,000 evaluation cycles,
starting after an initial convergence period of 20,000 evaluation cycles. At R = 10-5, the uncertainty of a fitness
observation is approximately 10% of the fitness value, and the KGA can track the optimal solution to within about
2% relative error.
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Figure 7. The relative error, (fKGA – fDijkstra)/fDijkstra of the KGA solution, for a process noise level of 5.24(10)-10, and
an observation noise level of R = 10-8. The population size is 10. Half of the evaluation cycles are apportioned to
new individuals. The transmission loss of the optimal configuration ranges from 0.0263 to 0.0359.

There is a class of problems in which the environment is stationary (Q = 0), but the fitness evaluations are
noisy. This class includes problems that are complicated enough to require time-consuming Monte Carlo methods
or simulation approaches to evaluate the fitness of solutions. In this case, if the uncertainty after the initial
evaluation of a solution is R, then the uncertainty after a total of n evaluations will be R/n. This follows from
repeated application of Eq. (3), or it could be obtained from statistical combination of n independent observations,
each with variance R. As in the case of the nonstationary environment with noisy evaluations, a method is
required to determine when to generate a new individual, and when to re-evaluate an existing individual. The
KGA can be applied as is for stationary environments. In operation, the KGA discards very poor solutions
immediately after their first evaluation. Poor solutions that appear to be better than they are due to fortuitous
combination of stochastic effects can be discarded after a few re-evaluations when their poor fitness becomes
apparent. Relatively fit solutions survive long enough to receive further re-evaluations. This clearly provides an
improvement in computational efficiency over the common approach of re-evaluating each new solution until its
uncertainty falls below some arbitrarily selected level, and then applying the basic GA using the resulting fitness
estimate.
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Figure 8. The time-averaged relative error, (fKGA – fDijkstra)/fDijkstra of the KGA solution, for several observation
noise levels. The process noise level is Q = 5.24(10)-11, and the population size is 10. Half of the evaluation cycles
are apportioned to new individuals.

5.4 Excursion: Process Noise
Another excursion from the baseline case was examined in which the process noise was varied over a

factor of 100. This was accomplished by moving the sensors at a rate of one sensor movement every 5, 50, or 500
evaluation cycles. The observation noise variance was fixed at R = 10-8. The population size was 10 individuals,
and 50% of evaluation cycles are used for re-evaluation of existing individuals. Fig. 9 shows the relative error,
again averaged over 230,000 time steps, excluding the first 20,000 cycles. A factor of ten reduction in process
noise from baseline allows the KGA to track the optimal solution almost perfectly (time-averaged relative error of
0.0010%). On the other hand, a factor of ten increase in process noise variance degrades the KGA’s ability
significantly, raising the average relative error from 1.09% to 17.5% worse than optimal. The ability of the KGA
to track the optimal solution degrades much more sharply with process noise than with observation noise. This is
because the process noise continuously raises the uncertainty of all individuals in the population, while the
observation noise only affects one individual at a time.

5.5 Excursion: Allocation between new individuals and re-evaluations
The sensitivity of the KGA to the fraction of cycles allocated to re-evaluating existing individuals was

examined next. Five ratios were examined: 1 new individual per 4 re-evaluations; 2 new individuals per 3 re-
evaluations; 1 new individual per re-evaluation; 3 new individuals per 2 re-evaluations; and 4 new individuals per
re-evaluation. The process noise was Q = 5.24(10)-11 per cycle, which is an order of magnitude below the
baseline. The observation noise variance was R = 10-8. The population size was 10 individuals. Fig. 10 shows the
relative error, again averaged over 230,000 evaluation cycles, beginning after the first 20,000 cycles. The
performance of the KGA is degraded in both the extreme cases. Too much expenditure on new individuals allows
the existing individuals to become out of date. Too much expenditure on re-evaluating existing individuals
prevents effective search of new alternatives.
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Figure 9. The time-averaged relative error, (fKGA – fDijkstra)/fDijkstra of the KGA solution, for several process noise
levels, at an observation noise level of R = 10-8. The population size is 10. Half of the evaluation cycles are
apportioned to new individuals.

Several attempts were made to develop a more sophisticated way to decide whether to generate a new
individual or re-evaluate an existing individual. Intuitively, when the uncertainty of all individuals is low,
evaluation cycles should not be wasted on re-evaluations but should instead be dedicated to new individuals.
There are several criteria that might be applied to determine what qualifies as high or low uncertainty level. One
intuitive criteria is to compare the uncertainty to the variance of the population fitnesses. It could also be
compared to the observation noise variance, or the process noise variance per cycle multiplied by some relevant
number of cycles. If the variance of the population fitnesses is much larger than the uncertainty of a particular
individual, then the fitness of that individual relative to the rest of the population can be ascertained reliably.
Likewise, if the uncertainty of an individual is much greater than the variance of the population fitness, the merit
of that individual relative to the existing population cannot be determined reliably unless its fitness is extremely
poor.  A fairly simple allocation strategy was developed based on these notions: When the uncertainty of the most
uncertain existing individual exceeds the variance of the population fitness, the most uncertain existing individual
is re-evaluated. On the other hand, a new individual is generated whenever the uncertainty of all existing
individuals is below the variance of the population fitness. This strategy usually worked as well as a well-chosen
fixed allocation fraction (and much better than a poor fixed allocation fraction). However, situations arose
occasionally where this strategy gets stuck always allocating either one way or the other. Further research may
allow the KGA to allocate evaluation cycles in a robust and effective way, without the need to specify a fixed
allocation fraction.
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Figure 10. The time-averaged relative error, (fKGA – fDijkstra)/fDijkstra of the KGA solution, for process noise level Q =
5.24(10)-11 and an observation noise level of R = 10-8. The population size is 10.

5.6 Excursion: Population Size
The KGA was then run with various population sizes. The process noise was Q = 5.24E-11 per cycle,

which is an order of magnitude below the baseline. The observation noise variance was R = 10-8. Half of the
evaluation cycles were allocated to re-evaluation of existing individuals. Fig. 11 shows the time-averaged relative
error of the best KGA solution.

At a population size of 10, the KGA tracks the optimal solution to within 0.001%. When the population is
too small, the lack of diversity degrades the power of the search method. The KGA with a population size of 1 is
equivalent to search by trial and error, also known as pivot and offset search. New individuals are produced by
mutations of the single maintained individual. The KGA with a population of 10 tracks the optimal solution 700
times better than a trial-and-error search. When a large population size is used, evaluation cycles are wasted re-
evaluating unfit members of the population.

Preliminary investigations have been made to develop a strategy to allow the KGA to adjust the
population size during operation. In the previous section, it was argued that each individual’s uncertainty ought to
be held below the variance, V, of the population fitnesses. When the uncertainty of an individual rises just above
V, it will be re-evaluated, after which its uncertainty will be reduced to VR/(V+R), as per Eq. (3). After n cycles,
its uncertainty will increase by nQ, according to Eq. (1). After Nmax=V2/(Q(V+R)) cycles, its uncertainty will have
risen back up to V, and it will need re-evaluation. If the population size is equal to Nmax, all evaluation cycles
would have to be expended on re-evaluating existing individuals just to keep their uncertainty low enough to
know whether or not they belong in the population. For larger population size, even spending all evaluation cycles
on re-evaluating existing individuals is insufficient to prevent all individuals from becoming hopelessly out of
date. If the population size is smaller than Nmax, it will be possible to hold the uncertainties of existing individuals
below V, while having evaluation cycles available for new individuals. For a population size of N1 =
V3/(Q(V+R)2), it should be possible to expend half of the evaluation cycles on new individuals, while maintaining
the uncertainties of existing individuals at less than V. A dynamic population size was implemented by using N1
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as the target population size. The population is allowed to grow by one after a new individual is created whenever
the current population size is less than the target population size. The population is reduced by one after a re-
evaluation whenever the population size exceeds the target population size. With this implementation, the
population size was observed to fluctuate rapidly over a large range (from a few individuals up to thousands).
Further research may lead to a robust approach to dynamic adjustment of the population size.
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Figure 11. The time-averaged relative error, (fKGA – fDijkstra)/fDijkstra of the KGA solution, for process noise level Q =
5.24(10)-11 and an observation noise level of R = 10-8. Half of the evaluation cycles are apportioned to new
individuals.

6. Conclusion
In a large class of problems, the fitnesses of solutions have inherent uncertainty. Proper treatment of this

uncertainty can enable GAs, and other evolutionary algorithms, to be used for ongoing search in these problems.
It is trivial to extend the GA structure to include the uncertainty: simply associate a second real-valued parameter
(the uncertainty) with each individual, in addition to the real-valued parameter (the fitness) that it already uses. It
has been shown that the Kalman formulation provides the mechanics for updating the fitness and uncertainty of an
individual, after a re-evaluation or after the passage of time. These mechanics are contained in three simple
equations (1-3) which are easy to interpret and implement.

The primary augmentation to the basic GA is that some fitness evaluation cycles are expended in re-
evaluating existing individuals. The simplest possible allocation heuristic, in which a fixed fraction of the
evaluation cycles is allocated to re-evaluating existing individuals, has been found to be effective. Best
performance was obtained when one existing individual is re-evaluated for every new individual generated, if the
population is of proper size. A simple heuristic was also found to be effective for selecting which existing
individual should be re-evaluated when an evaluation cycle is to be expended on re-evaluation. Of the existing
individuals with fitness in excess of the population mean minus the population standard deviation, the one with
the greatest uncertainty is selected for re-evaluation.
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Preliminary investigation into more sophisticated approaches to deciding when to create a new individual
shows promise. In contrast to the basic GA, in the KGA there is an optimal population size. Preliminary
investigation of dynamic population size heuristics also shows promise.

Both the determination of which individual is taken to represent the best current solution and the genetic
operation used to select parents for reproduction make use of the estimated fitness only. Alternative formulations
using uncertainty as well as estimated fitness may be more effective. For example, individuals could be selected
for reproduction on an uncertainty-compensated fitness (e.g., f-√P) rather than on the fitness alone. Preliminary
investigation did not conclusively demonstrate superiority of using uncertainty-compensated fitness rather than
fitness alone, but clearly given a choice between two identically fit solutions, the more certain one ought to be
preferred.

The overall conclusion of this work is that the Kalman formulation integrates into the genetic algorithm
formulation in a compelling way, creating a Kalman-extended genetic algorithm that can perform ongoing
directed searches in nonstationary, noisy environments.

References
1. J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, MA (1992).

2. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA

(1989).

3. D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press, Piscataway, NJ

(1995).

4. R. E. Kalman, “A new approach to linear filtering and prediction problems,” J. Basic Eng. part D, vol. 82, pp 35-45

(1960).

5. R. E. Kalman and R. S Bucy, “New results in linear filtering and prediction theory,” J. Basic Eng. part D, vol. 83, pp 95-

108 (1961).

6. S. Haykin, Adaptive FilterTheory, Prentice-Hall, Englewood Cliffs, NJ (1986).

7. H. Plotkin, Darwin Machines and the Nature of Knowledge, Harvard University Press, Cambridge, MA (1994).

8. P. E. Howland, “Target tracking using television-based bistatic radar,” IEE Proc. Radar Sonar and Navigation, vol. 146,

no. 3, pp. 166-174 (June 1999).

9. M. J. Arcos, C. Alanso, and M. C. Ortiz, “Genetic-algorithm-based potential selection in multivariant voltammetric

determination of indomethacin and acemethacin by partial least-squares,” Electrochimica Acta, vol. 43, no. 5-6, pp. 479-

485 (1998).

10. W. S. Chaer, R. H. Bishop, and J. Ghosh, “A mixture-of-experts framework for adaptive Kalman filtering,”  IEEE Trans.

Systems, Man, and Cybernetics, Part B-Cybernetics , vol. 27, no. 3, pp. 452-464 (June 1997).

11. K. G. Berketis, S. K. Katsikas, and S. D. Likothanassis, “Multimodal partitioning filters and genetic algorithms,”

Nonlinear Analysis-Theory Methods & Applications, vol. 30, no. 4, pp. 2421-2427 (Dec 1997).

12. L. A. Wang, J. Yen, “Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter,”

Fuzzy Sets and Systems, vol. 101, no. 3, pp. 353-362 (Feb 1, 1999).

13. S. E. Aumeier, J. H. Forsmann, “Evaluation of Kalman filters and genetic algorithms for delayed-neutron nondestructive

assay data analyses,”  Nuclear Technology, vol. 122, no. 1, pp. 104-124 (April 1998).

14. K. S. Tang, K. F. Man, S. Kwong, “GA approach to time-variant delay estimation,” Proc. Int. Conf. on Control and

Information, Hong Kong, pp. 173-175 (1995).

15. D. E. Goldberg and R. E. Smith, “Nonstationary function optimization using genetic dominance and diplody,” in J. J.

Grefenstette, Ed., Proceedings of the Second International Conference on Genetic Algorithms and their Applications,

Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 59-68 (1987).

16. J. J. Grefenstette, “Genetic algorithms for changing environments,” in R. Männer and B. Manderick, Eds., Parallel

Problem Solving from Nature 2, Elsevier, Amsterdam, pp. 137-144 (1992).



20

17. H. G. Cobb, “An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having

continuous, time-dependent nonstationary environments,” Naval Research Laboratory Memorandum Report 6760

(1990).

18. J. H. Holland, “Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based

systems,” in R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds., Machine learning, an artificial intelligence

approach, vol. II, Morgan Kaufmann, Los Altos, CA, pp. 593-623 (1986).

19. S. W. Wilson, “Classifier fitness based on accuracy,” Evolutionary Computation, vol. 3, No. 2, pp. 149-175 (1995).

20. P. L. Lanzi and M. Colombetti, “An extension  to the XCM classifier system for stochastic environments,” in W.

Banzhaf, et al., Eds., Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), Morgan

Kaufmann, San Francisco, CA, pp. 353-360 (1999).

21. S. W. Wilson, “State of XCS classifier system research,” in P. L. Lanzi, W. Stolzmann, and S. W. Wilson, Eds., Learning

Classifier Systems From Foundations to Applications, Lecture Notes in Artificial Intelligence 1813, Springer-Verlag,

Berlin, pp. 63-81 (2000).

22. P. D. Stroud, “Evolution of cooperative behavior in simulation agents,” in S. K. Rogers, et al., Eds., Applications and

Science of Computational Intelligence, Proceedings of SPIE vol. 3390, pp. 243-252 (April 1998).

23. P. D. Stroud, “Adaptive simulated pilot,” Journal of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 352-354

(March-April 1998).

24. P. D. Stroud, “Learning and adaptation in an airborne laser fire controller,” IEEE Transactions on Neural Networks, vol.

8, no. 5, pp. 1078-1089 (Sept 1997).

25. P. D. Stroud, and R. C. Gordon, “Automated military unit identification in battlefield simulation,” in F. A. Sadjadi, Ed.,

Automatic Target Recognition VII, Proceedings of SPIE vol. 3069, pp. 375-386 (April 1997).

26. P. D. Stroud, C. T. Cunningham, G. Guethlein, “Rapid detection and classification of aerosol events based on changes in

particle size distributions,” in P. J. Gardner, Ed., Chemical and Biological Sensing, Proceedings of SPIE vol. 4036,

(April 2000).

27. L. J. Dowell, “Optimal configuration of a command and control network: balancing performance and reconfiguration

constraints,” in J. Carroll, et al., Eds., Proceedings of the 2000 ACM Symposium on Applied Computing, ACM Press, pp.

94-98 (March 2000).

28. E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,”  Numerische Mathematik 1, pp. 269-271 (1959).

29. E. Minieka, Optimization algorithms for networks and graphs, M. Dekker, New York (1978).

30. K. T. Ko, K. S. Tang, C. Y. Chan, K. P. Man, S. Kwong, “Using genetic algorithms to design mesh network,” Computer,

vol. 30, No. 8 (August 1997).

31. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 2nd ed., Springer, Berlin (1992).

32. H. Prüfer, “Neuer beweis eines satzes über permutationen,” Archives of Mathematical Physics, vol. 27, pp. 742-744

(1918).

33. M. Gen and Y.-Z. Li, “Spanning tree-based genetic algorithm for bicriteria transportation problem,” ComputersInd.

Engng., vol. 35, nos. 3-4, pp. 531-534 (1998).

34. T. H. Reijmers, R. Wehrens, L. M. C. Buydens, “Quality criteria of genetic algorithms for construction of phylogenetic

trees,” Journal of Computational Chemistry, vol. 20, No. 8, pp. 867-876 (1999).

35. D. K. Smith and G. A. Walters, “An evolutionary approach for finding optimal trees in undirected networks,”  European

Journal of Operational Research, vol. 120, pp.593-602 (2000).


